AT A TATT AT AT AT T AT T AT T AT T A AT T AT T AT TAT T AT AT T AT AT T AT T AT AT T AT T AT T AT AT AT AT AT AT A"

/ N/ Nt/ N/ Nt Nyt ot Nyt Nt ot Nt vt Nt vt Nyt vt gt Nt \wd N/ \

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDYALAYA

(University established under section 3of UGC Act 1956)
(Accredited with ‘A’ Grade by NAAC)
Enathur, Kanchipuram — 631 561
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

4 Lab Manual)

Digital Signal Processing

FULL TIME B.E Ill YEAR, V" SEMESTER

Prepared by:
Dr. V.Jayapradha, Assistant Professor

”"_‘j ‘mn«g,-ﬁﬂ:g -

i ——— oy | S

NV AN NNANANANNNNNNAN NN NN N NN

Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya
| Department of Electronics and Communication Engineering

Syllabus for Full Time BE, Regulations 2018
(Applicable for students admitted from 2018-19 onwards

PCC19 DIGITAL SIGNAL PROCESSING LABORATORY V SEMESTER

OBJECTIVES:
The student should be made to: 0(0[3]2

e To implement Linear and Circular Convolution.
e To implement FIR and IIR filters.

e To study the architecture of DSP processor

e To demonstrate Finite word length effect

LIST OF EXPERIMENTS:

MATLAB / EQUIVALENT SOFTWARE PACKAGE
1. Generation of sequences (functional & random) & correlation.

Multi-rate Filters.
Equalization Techniques.

2. Linear and Circular Convolutions.
3. Spectrum Analysis using DFT.

4. FIR filters design.

5. IIR filters design.

6.

7.

DSP PROCESSOR BASED IMPLEMENTATION
8. Study of architecture of Digital Signal Processor.
9. MAC operation using various addressing modes.
10. Linear Convolution.
11. Circular Convolution.
12. FFT Implementation.
13. Waveform generation.
14. IR and FIR Implementation.
15. Finite Word Length Effect.

OUTCOMES:
e Students will be able to carry out simulation of DSP systems
e Students will be able to analyze Finite word length effect on DSP systems
e Students will be able to demonstrate the applications of FFT to DSP
e Students will be able to implement adaptive filters for various applications of DSP

INDEX
LIST OF EXPERIMENTS

S.No | Date Name of the Experiment Page no Signature
la Generation of Continuous Time Signals
1b Generation of Discrete Time Signals
2 Correlation of Sequences
3 Linear and Circular Convolutions
4 Spectrum Analysis using DFT
54 Design of FIR_FiIters _
(rectangular window design)
5h Design of FIR Filters (Hanning
window design)
6 Design of IR Filters
7 Multirate Filters
8 Equalization
Using CC Studio
9 Study of Architecture of Digital Signal Processor
10 Linear Convolution
11 Circular Convolution
12 FFT Implementation
13 Waveform Generation
14 Interfacing of LED Using TMS320C6713 Kit

INTRODUCTION

MATLAB is a software package for high performance numerical computation
and visualization provides an interactive environment with hundreds of a built in
functions for technical computation, graphics and animation. The MATLAB name

stands for Matrix laboratory.

MATLAB
Y r r
Graphics Computations External interface
2-D graphics Linear algebra Interface with C and
3-D graphics Signal processing Fortran programs
Animation Polynomials & interpolation
Quadrature
Solution of ODEs

Y ¥

Toolbox
Signal processing Image processing
Statistics Control system
Neural networks Communications

At its core, MATLAB is essentially a set (a “toolbox’) of routines (called “m files” or
“mex files”) that sit on your computer and a window that allows you to create new variables
with names (e.g. voltage and time) and process those variables with any of those routines

(e.g. plot voltage against time, find the largest voltage, etc).

It also allows you to put a list of your processing requests together in a file and save
that combined list with a name so that you can run all of those commands in the same
order at some later time. Furthermore, it allows you to run such lists of commands such
that you pass in data. and/or get data back out (i.e. the list of commands is like a
function in most programming languages). Once you save a function, it becomes part of
your toolbox. For those with computer programming backgrounds: Note that MATLAB
runs as an interpretive language (like the old BASIC). That is, it does not need to be
compiled. It simply reads through each line of the function, executes it, and then goes

on to the next line.

DSP Development System

* Testing the software and hardware tools with Code Composer Studio
« Use of the TMS320C6713 DSK

 Programming examples to test the tools

Digital signal processors such as the TMS320C6x (C6x) family of processors are like fast special-
purpose microprocessors with a specialized type of architecture and an instruction set appropriate for
signal processing. The C6x notation is used to designate a member of Texas Instruments’ (TI)
TMS320C6000 family of digital signal processors. The architecture of the C6x digital signal processor is
very well suited for numerically intensive calculations. Based on a very-long-instruction-word (VLIW)
architecture, the C6x is considered to be TI’s most powerful processor. Digital signal processors are used for
a wide range of applications, from communications and controls to speech and image processing. The
general-purpose digital signal processor is dominated by applications in communications (cellular).
Applications embedded digital signal processors are dominated by consumer products. They are found in
cellular phones, fax/modems, disk drives, radio, printers, hearing aids, MP3 players, high-definition
television (HDTV), digital cameras, and so on. These processors have become the products of choice for a
number of consumer applications, since they have become very cost-effective. They can handle different

tasks, since they can be reprogrammed readily for a different application.

DSP techniques have been very successful because of the development of low-cost software and
hardware support. For example, modems and speech recognition can be less expensive using DSP
techniques.DSP processors are concerned primarily with real-time signal processing. Real-time processing
requires the processing to keep pace with some external event, whereas non-real-time processing has no
such timing constraint. The external event to keep pace with is usually the analog input. Whereas analog-
based systems with discrete electronic components such as resistors can be more sensitive to temperature

changes, DSP-based systems are less affected by environmental conditions.

DSP processors enjoy the advantages of microprocessors. They are easy to use, flexible, and
economical. A number of books and articles address the importance of digital signal processors for a
number of applications .Various technologies have been used for real- time processing, from fiber optics
for very high frequency to DSPs very suitable for the audio-frequency range. Common applications using
these processors have been for frequencies from 0 to 96 kHz. Speech can be sampled at 8 kHz (the rate at
which samples are acquired), which implies that each value sampled is acquired at a rate of 1/ (8 kHz) or
0.125ms. A commonly used sample rate of a compact disk is 44.1 kHz. Analog/digital (A/D) - based

boards in the megahertz sampling rate range are currently available.

Ex. No: 1a
Date:
GENERATION OF CONTINUOUS TIME SIGNALS

To generate a functional sequence of a signal (Sine, Cosine, triangular, Square, Saw
tooth and sinc) using MATLAB function.

APPARATUS REQUIRED:
HARDWARE : Personal Computer
SOFTWARE : MATLABR2014a
PROCEDURE:
1. Start the MATLAB program.
2. Open new M-file
3. Type the program
4. Save in current directory
5. Compile and Run the program
6. If any error occurs in the program correct the error and run it again
7. For the output see command window\ Figure window
8. Stop the program.

PROGRAM: (Generation of Continuous Time Signals) _

%Program for sine wave

t=0:0.1:10;

y=sin (2*pi*t) ;
subplot(3,3,1);
plot(t,y,'k");
xlabel ('Time') ;
ylabel ('Amplitude’) ;
title('Sine wave');

%Program for cosine wave
t=0:0.1:10;
y=cos (2*pi*t) ;
subplot(3,3,2);
plot(t,y,'k");
xlabel ('Time') ;
ylabel ('Amplitude’) ;
title('Cosine wave');

%$Program for square wave
t=0:0.001:10;
y=square (t) ;
subplot(3,3,3);

plot(t,y,'k");

xlabel ('Time') ;
ylabel ('Amplitude’) ;
title('Square wave');

%Program for sawtooth wave
t=0:0.1:10;
y=sawtooth (t) ;
subplot(3,3,4);
plot(t,y,'k');
xlabel ('Time') ;
ylabel ('Amplitude’) ;
title('Sawtooth wave');

%Program for Triangular wave
t=0:.0001:20;
y=sawtooth(t,.5); % sawtooth with 50% duty cycle
(triangular)
subplot(3,3,5);
pl°t (tIY) 7
ylabel ('Amplitude');
xlabel ('Time Index');
title('Triangular waveform') ;
%Program for Sinc Pulse
t=-10:.01:10;
y=sinc(t) ;
axis([-10 10 -2 2]);
subplot(3,3,6)
plot(t,y)
ylabel ('Amplitude')
xlabel ('Time Index') ;
title('Sinc Pulse') ;

% Program for Exponential Growing signal
t=0:.1:8;
a=2;
y=exp (a*t);
subplot(3,3,7);
plot(t,y)’
ylabel ('Amplitude');
xlabel ('Time Index');
title('Exponential growing Signal') ;

% Program for Exponential Growing signal
t=0:.1:8;
a=2;
y=exp (-a*t);
subplot(3,3,8);
plot (tIY) 7
ylabel ('Amplitude');
xlabel ('Time Index');
title('Exponential decaying Signal');

QUTPUT: (Generation of Continuous Time Signals)

Sanz wave
T— —
| N l‘t] “‘; Il ;u |'| III |'|
Il |
= 9|] INARINIRLINIY.
3 | [t)] | | | | | |
= of][] EEANRRRTAL.
IR IRTRIRIRIRIRIR
RN (]
AR 0w Uy Iy
"o 2 4 5 8 10
Timz
Sawtooth wawe
1 2
e
0s /
s
3 / 5
= 0 Py 2
£ - y
< a5 - //
4 l
0 2 4 5 8 T
Timz
mxm' Exponential growing Signal
=
<
E:
= 5
£
<
] %
0 2 4 5 3
Time Index

Cosnewawe Square wawe
1 — 1
ARAAANAANN
s 051 I I 1 Il I 1 o 05
O ARANARARANARATARLE
Ottty & @
B | | 1] [1] g
05 | 1] 1| 1) 05
1) lI 1) {| 0| {| II 1] (!
gL y VoogY¥y ¥, ¥¥ 4
0 2 4 6 8 10 i} 2 4 6 8 10
Time Time
Trianguiar wavefomm Sinc Puse
2 1
1 {
z £ 05 |
= 2
< 1 < 1] S e Vava
2 05
-10 5 0 5 10 -10 5 o 5 10
Time ladex Timne Index
Expenental decaying Signal
1
°
=
=
=05
£
<
1]
0 2 4 3 8
Time ladex

Thus the MATLAB programs for functional sequence of a signal (Sine, Cosine,

triangular, Square, Saw tooth and sinc) using MATLAB function written and the results were

plotted.

Ex. No: 1b
Date:
GENERATION OF DISCRETE TIME SIGNALS

To generate a discrete time signal sequence (Unit step, Unit ramp, Sine, Cosine,
Exponential, Unit impulse) using MATLAB function.

APPARATUS REQUIRED:
HARDWARE : Personal Computer
SOFTWARE : MATLABR2014a
PROCEDURE:

1. Start the MATLAB program.

Open new M-file

Type the program

Save in current directory

Compile and Run the program

If any error occurs in the program correct the error and run it again

For the output see command window\ Figure window

© N oo a M w DN

Stop the program.

PROGRAM: (Generation of Discrete Time Signals)
%$Program for unit step sequence
clc;
N=input ('Enter the length of unit step sequence(N)= ')
n=0:1:N-1;
y=ones (1,N) ;
subplot(3,2,1);
stem(n,y, 'k');
xlabel ('Time')
ylabel ('Amplitude')
title('Unit step sequence') ;
%$Program for unit ramp sequence
Nl=input ('Enter the length of unit ramp sequence (Nl)= ');
nl=0:1:N1-1;
yl=nl;
subplot(3,2,2);
stem(nl,yl,'k"');
xlabel ('Time') ;
ylabel ('Amplitude’) ;
title('Unit ramp sequence');
%Program for sinusoidal sequence
N2=input ('Enter the length of sinusoidal sequence (N2)=
")
n2=0:0.1:N2-1;
y2=sin (2*pi*n2) ;
subplot(3,2,3);
stem(n2,y2,'k"');
xlabel ('Time') ;
ylabel ('Amplitude’) ;
title('Sinusoidal sequence') ;
%$Program for cosine sequence
N3=input ('Enter the length of the cosine sequence (N3)=');
n3=0:0.1:N3-1;
y3=cos (2*pi*n3) ;
subplot(3,2,4);
stem(n3,y3,'k"');
xlabel ('Time') ;
ylabel ('Amplitude') ;
title('Cosine sequence');
%Program for exponential sequence
N4=input ('Enter the length of the exponential
sequence (N4)= ') ;
n4=0:1:N4-1;
a=input ('Enter the value of the exponential sequence (a)=
') ,.
y4=exp (a*n4) ;
subplot(3,2,5);
stem(nd,y4,'k');
xlabel ('Time') ;
ylabel ('Amplitude’) ;
title('Exponential sequence');
%$Program for unit impulse
n=-3:1:3;
y=[zeros(1,3) ,ones(1,1) ,zeros(1,3)];

subplot(3,2,6)
stem(n,y, 'k');

xlabel ('Time') ;

ylabel ('Amplitude’) ;
title('Unit impulse');

QOUTPUT: (Generation of Discrete Time Signals)

LInit step sequence Unit ramp seguence

£ -

4

Amplitude
=
o

Amplitude
o

0
0
o —

i

=
=
-

=]
25
7
i3
=
¢
I

Arnplitude
1=}
@&
[
¥
|
Amplitude
=
& =2
(e
—
—
[
i

|
o o2 03 04 05 06 @OF 08 (uk:] 1

=)

E L L s o o .
(I ot 0 03 04 05 mE OF 0 09 1

Amplitude
Amplitude
=
1]
i

Y
i 1 2 3 4 5 B 7 B) 3 2 1 0 1 2 3
Time Time:
RESULT:

Thus the MATLAB programs for discrete time signal sequence (Unit step, Unit
ramp, Sine, Cosine, Exponential, Unit impulse) using MATLAB function written and the

results were plotted.

Ex. No: 2
Date:
CORRELATION OF SEQUENCES

To write MATLAB programs for auto correlation and cross correlation.

APPARATUS REQUIRED:

HARDWARE : Personal Computer
SOFTWARE : MATLABR2014a
PROCEDURE:

1. Start the MATLAB program.

N

Open new M-file
Type the program

Save in current directory

o > »w

Compile and Run the program

IS

If any error occurs in the program correct the error and run it again
7. For the output see command window\ Figure window

8. Stop the program.

PROGRAM: (Cross-Correlation of the Sequences)

clc;

clear all;

close all;

x=input ('Enter the sequence 1:
h=input ('Enter the sequence 2:
y=xcorr (x,h) ;

figure;

subplot(3,1,1);

stem(x) ;

xlabel ('n->"');

ylabel ('Amplitude->"') ;
title('Input sequence 1');
subplot(3,1,2);
stem(fliplr(y))

stem (h) ;

xlabel ('n->"');

ylabel ('Amplitude->") ;
title('Input sequence 2');
subplot(3,1,3);
stem(fliplr(y))

xlabel ('n->"');

ylabel ('Amplitude->") ;
title('Output sequence') ;
disp('The resultant is');
fliplr(y);

QUTPUT: (Cross-Correlation of the Sequences)

Enter the sequence 1: [1 3 5 7]
Enter the sequence 2: [2 4 6 8]

Input sequence 1

8 T T T

Amplitude->

(=R
T
b —

25

n-=
Input sequence 2
g T T T

w

El5

Amplitude->
=R

T T
o—

25
n-=
Qutput sequence

El5

50—

Amplitude->

m

PROGRAM: (Auto Correlation Function)

clc;

close all;

clear all;

x=input ('Enter the sequence 1: ');
y=xcorr (x,Xx) ;

figure;

subplot(2,1,1) ;

stem (x) ;

ylabel ('Amplitude->") ;
xlabel ('n->"');
title('Input sequence') ;
subplot(2,1,2);
stem(fliplr(y))

ylabel ('amplitude') ;
xlabel ('n->"');
title('Output sequence');
disp('the resultant is ');
fliplr(y);

QUTPUT: (Auto Correlation Function)

Enter the sequence [1 2 3 4]

Input sequence

2 T
3 |
?
)
=
S -
£
Ed
16 —
i | | |
1 158 2 25 | a5 4
n-=
Output seguence
a0 T T
25— —
20— —
o
=
=
Z 15 —
£
©
10— —
5 —
o
1 2 3 4 5 B 7
n->

Thus the MATLAB programs for auto correlation and cross correlation written and

the results were plotted.

Ex. No: 3
Date:
LINEAR AND CIRCULAR CONVOLUTIONS

To write MATLAB programs to find out the linear convolution and Circular
convolution of two sequences.

APPARAT REQUIRED:

HARDWARE : Personal Computer
SOFTWARE : MATLABR2014a
PROCEDURE:

1. Start the MATLAB program.

Open new M-file

Type the program

Save in current directory

Compile and Run the program

If any error occurs in the program correct the error and run it again

For the output see command window\ Figure window

©@ N o a > w DN

Stop the program.

PROGRAM: (Linear Convolution)

% linear convolution
close all

clear all

x=input ('Enter x: ")
h=input ('Enter h: ")
m=length (x) ;
n=length (h) ;
X=[x,zeros(1l,n)];
H=[h,zeros(1,m)];

for i=1:n+m-1

Y(i)=0;
for j=1:i
Y (i)=Y (i) +X(3) *H(i-3+1) ;
end
end
Y
stem(Y) ;
ylabel ('Y[n]');
xlabel (' -=-->n"'");

title('Convolution of Two Signals without conv
function') ;

INPUT:
enter x: [1 2 3 4 5]
x=12345
Enter h: [1 2 3 1]
h= 1231
Y = 14 10 17 24 25 19 5

QUTPUT: (Linear Convolution)

1]

Comodubion of Two Sigrats without comv fuschion

PROGRAM: (Circular Convolution)

clc; clear;

a = input('enter the sequence x(n)
b = input('enter the sequence h(n) = ');
nl=length(a) ;

n2=length (b) ;

N=max (nl,n2) ;

X = [a zeros(1l, (N-nl))];

for i = 1:N

k = 1i;

for j = 1:n2

H(i,j)=x(k)* b(j);

|
~
~e

k = k-1;
if (k == 0)
k = N;

end end end

y=zeros (1,N) ;

M=H';

for j 1:N

for i = 1:n2

y(3)=M(i,3)+y(3);

end end

disp('The output sequence is y(n)= "');
disp(y);

stem(y) ;

title('Circular Convolution');
xlabel('n');

ylabel('y(n) ') ;

QUTPUT: (Circular Convolution)

Enter the sequence x(n) = [1 2 3 4]

Enter the sequence h(n) = [1 2 1 1]

The output sequence is y(n)= 14 11 12 13
RESULT:

Thus the MATLAB programs for linear convolution and circular convolution

written and the results were plotted.

Ex. No: 4
Date:

SPECTRUM ANALYSIS USING DFT
AIM:

To write MATLAB program for spectrum analyzing signal using DFT.
APPARATUS REQUIRED:
HARDWARE : Personal Computer
SOFTWARE : MATLABR2014a
PROCEDURE:
9. Start the MATLAB program.
10. Open new M-file
11. Type the program
12. Save in current directory
13. Compile and Run the program
14. If any error occurs in the program correct the error and run it again
15. For the output see command window\ Figure window

16. Stop the program.

PROGRAM: (Spectrum Analysis Using DFT)
N=input ('type length of DFT= ') ;

T=input ('type sampling period= ')
freg=input('type the sinusoidal freq= ');
k=0:N-1;

f=sin(2*pi*freq*l/T*k) ;

F=fft(f);

stem(k,abs (F)) ;

grid on;

xlabel('k') ;

ylabel ('X(k) ') ;

INPUTS
type length of DFT=32

type sampling period=64
type the sinusoidal freg=11

QUTPUT: (Spectrum Analysis Using DFT)

12 T T T T T T

10

T
©
€

!

X(k)
D

T oseesgeet 1]

0 5 10 5 25 30 35
k

RESULT:
Thus the Spectrum Analysis of the signal using DFT is obtained using MATLAB.

Ex. No: 5a

Date:
DESIGN OF FIR FILTERS
(RECTANGULAR WINDOW DESIGN)

To write a program to design the FIR low pass, High pass, Band pass and Band stop
filters using RECTANGULAR window and find out the response of the filter by using
MATLAB.

APPARATUS REQUIRED:

HARDWARE : Personal Computer
SOFTWARE : MATLAB R2014a
PROCEDURE:

1. Start the MATLAB program.
Open new M-file

Type the program

Save in current directory
Compile and Run the program

If any error occurs in the program correct the error and run it again

N oo o &~ w DN

For the output see command window\ Figure window

®©

Stop the program.

PROGRAM: (Rectangular Window)

clear all;
rp=input ('Enter the PB ripple rp =');
rs=input ('Enter the SB ripple rs =');
fp=input('Enter the PB ripple fp =');
fs=input ('Enter the SB ripple fs =');
f=input ('Enter the sampling frequency f =');
wp=2*fp/f;
ws=2*fs/f;
num=-20*1ogl0 (sqrt (rp*rs)) -13;
den=14.6* (fs-fp) /£;
n=ceil (num/den) ;
nl=n+l;
if(rem(n,2)~=0)

n=nl;

n=n-1;
end;
y=boxcar (nl) ;

%L PF

b=firl (n,wp,y)
[h,o]=freqz (b,1,256) ;
m=20*10gl0 (abs (h)) ;
subplot(2,2,1);
plot(o/pi,m);
xlabel ('Normalized frequency ------ > ¥
ylabel ('Gain in db ----- -- L
title ('MAGNITUDE RESPONSE OF LPF') ;

%HPF

b=firl (n,wp, 'high',y) ;

[h,o]=freqz (b,1,256) ;

m=20*10gl0 (abs (h)) ;

subplot(2,2,2);

plot(o/pi,m) ;

xlabel ('Normalized frequency------ >');

ylabel ('Gain in db ----- -- L)

title ('MAGNITUDE RESPONSE OF HPF') ;
%BPF

wn=[wp ws];

b=firl(n,wn,y)

[h,o]=freqz (b,1,256) ;

m=20*10gl0 (abs (h)) ;

subplot(2,2,3);

plot(o/pi,m);

xlabel ('Normalized frequency ------ >');

ylabel ('Gain in db----- -- ')

title ('MAGNITUDE RESPONSE OF BPF') ;
%BSF

b=firl (n,wn, 'stop',y)

[h,o]=freqz (b,1,256) ;

m=20*1o0gl0 (abs (h)) ;

subplot(2,2,4);

plot(o/pi,m);

xlabel ('Normalized frequency

ylabel ('Gain in db ----
title ('MAGNITUDE RESPONSE OF BSF') ;

QUTPUT: (Rectangular Window)

Enter the
Enter the
Enter the
Enter the

PB ripple Xp
SB ripple Xg
PB ripple fp
SB ripple £

- =)

=.03
=.05
=2000
=3000

Enter the sampling frequency £ =9000

MAGNITUDE RESPONSE OF LPF

MAGNITUDE RESPONSE OF HPF

0.5 1
Normalized fregency ---->

MAGNITUDE RESPONSE OF BSF

50 50
0 L0
o o
© ©
£ =
c -50 { e -50
= =
o O
-100 ‘ -100
0 0.5 1 0
Normalized fregency----->
MAGNITUDE RESPONSE OF BPF
50 20
s' ey
i 0 !
S W S -20
= | £
= -50 W { ¢
« ‘® -40
o O
-100 : -60
0 0.5 1 0
Normalized fregency----->
RESULT:

Thus the program to design FIR low pass, high pass, band pass and band stop Filters
using RECTANGULAR Window was written and response of the filter using MATLAB was

executed.

0.5 1
Normalized fregency ---->

Ex. No: 5b
Date:
DESIGN OF FIR FILTERS
(HANNING WINDOW DESIGN)

To write a program to design the FIR low pass, High pass, Band pass and Band stop
filters using HANNING window and find out the response of the filter by using MATLAB.

APPARATUS REQUIRED:
HARDWARE : Personal Computer
SOFTWARE : MATLABR2014a
PROCEDURE:

1. Start the MATLAB program.
Open new M-file

Type the program

Save in current directory

Compile and Run the program

S T

If any error occurs in the program correct the error and run it again

~

For the output see command window\ Figure window

8. Stop the program.

PROGRAM: (Hanning Window)

clear all;
rp=input ('Enter the PB ripple rp =');
rs=input ('Enter the SB ripple rs =');
fp=input('Enter the PB ripple fp =');
fs=input ('Enter the SB ripple fs =');
f=input ('Enter the sampling frequency f =');
wp=2*fp/f;
ws=2*fs/f;
num=-20*1ogl0 (sqrt (rp*rs)) -13;
den=14.6* (fs-fp) /£;
n=ceil (num/den) ;
nl=n+l;
if(rem(n,2)~=0)

n=nl;

n=n-1;
end;
y=hanning(nl) ;

%LPF

b=firl (n,wp,y)
[h,0]=freqz (b,1,256) ;
m=20*10gl0 (abs (h)) ;
subplot(2,2,1);
plot (0/pi,m) ;
xlabel ('Normalized freqency ------ >
ylabel ('Gain in db ----- -- L
title ('MAGNITUDE RESPONSE OF LPF') ;

%HPF

b=firl (n,wp, 'high',y) ;

[h,0]=freqz (b,1,256) ;

m=20*1o0gl0 (abs (h)) ;

subplot(2,2,2);

plot (0/pi,m);

xlabel ('Normalized freqency ------ >');

ylabel ('Gain in db ----- -- ')

title ('MAGNITUDE RESPONSE OF HPF') ;
%BPF

wn=[wp ws];

b=firl(n,wn,y)

[h,0]=freqz (b,1,256) ;

m=20*10gl0 (abs (h)) ;

subplot(2,2,3);

plot(0/pi,m);

xlabel ('Normalized freqency ------ >');

ylabel ('Gain in db----- -- ')

title ('MAGNITUDE RESPONSE OF BPF') ;
%BSF

b=firl (n,wn, 'stop',y)

[h,0]=freqz (b,1,256) ;

m=20*1o0gl0 (abs (h)) ;

subplot(2,2,4);

plot (0/pi,m) ;

xlabel ('Normalized freqency ------ >');
ylabel('Gain in db----- -- ')

title ('MAGNITUDE RESPONSE OF BSF') ;

QUTPUT: (Hanning Window)

Enter the
Enter the
Enter the
Enter the
Enter the

MAGNITUDE RESPONSE OF LPF

50

-50

-100

Gain in db----- --.

-150
0

Normalized fregency------>
MAGNITUDE RESPONSE OF BPF

0

PB ripple rp =.03
SB ripple rs =.02
PB ripple fp =1500
SB ripple fs =2000

sampling frequency £ =9000

MAGNITUDE RESPONSE OF HPF

50
P00
o
©
=
= -50
‘©
)
‘ - -100
0.5 1 0 0.5 1

Normalized fregency ----- >
MAGNITUDE RESPONSE OF BSF

Gain in db----- --,

Gain in db-------

Normalized fregency------>

RESULT:

5
0
-50]
c 5
-100 ‘
0 1

-10

o

0.5 1
Normalized fregency ----- >

Thus the program to design FIR low pass, high pass, band pass and band

stop Filters using HANNING Window was written and response of the filter using
MATLAB was executed.

Ex. No: 6

Date:
DESIGN OF IIR FILTERS
AlM:
To write a program to design the IR Filter using Impulse Invariant Transformation

method and find out the Magnitude response and Pole Zero Plot by using MATLAB.

APPARATUS REQUIRED:
HARDWARE : Personal Computer
SOFTWARE : MATLABR2014a
PROCEDURE:

1. Start the MATLAB program.
2. Open new M-file

Type the program

Save in current directory
Compile and Run the program

If any error occurs in the program correct the error and run it again

N oo o b~ »w

For the output see command window\ Figure window

©

Stop the program.

PROGRAM: (1R Butterworth Filter using Impulse Method)

N=input ('ENTER THE FILTER ORDER N = ') ;
fs=input ('ENTER THE SAMPLING FREQUENCY fs
fc=input ('ENTER THE CUT-OFF FREQUENCY fc = '
wc=2*pi*fc;

[na,da]=butter (N,wc,'s"');

[n,d]=impinvar (na,da, fs) ;
[h,f]=freqz(n,d, 512, fs) ;
gain=20*1oglO0 (abs (h)) ;

subplot(2,1,1) ;

plot(f,gain) ;

xlabel ('Frequency --- >');
ylabel ('Magnitude --- >');
title ('AMPLITUDE RESPONSSE') ;
subplot(2,1,2);

zplane (n,d) ;

z=roots (n); p=roots(d);

xlabel ('Real part --- >');
ylabel ('Imaginary part--- >');
title ('POLE-ZERO PLOT') ;

OUTPUT: (IIR Butterworth Filter using Impulse Method)

ENTER THE FILTER ORDER N = 2
ENTER THE SAMPLING FREQUENCY fs = 1280
ENTER THE CUT-OFF FREQUENCY fc = 150

AMPLITUDE RESPONSSE

A 5L i
@
S ol 1
c
g
s -15¢ B
-20
0 100 200 300 400 500 600 700
Frequency -->
POLE-ZERO PLOT
1F]
L 05 1
IS X
Q
> 0
(U 3 i
c X
2 -05¢ .
-1t | | 1 | [

-3 -2 -1 0 1 2 3
Real part--->

PROGRAM: (1R Butterworth Using Bilinear Transformation)

wp=input ('ENTER THE PASSBAND EDGE FREQUENCIES wp= '),
ws=input ('ENTER THE STOPBAND EDGE FREQUENCIES ws= '),
rp=input ('ENTER THE PASSBAND RIPPLE rp= ');
rs=input ('ENTER THE STOPBAND RIPPLE rs= ') ;
fs=input ('ENTER THE SAMPLING FREQUENCY fs= ') ;
wpn=wp/ (£s/2) ;

wsn=ws/ (£s/2) ;

[N, fc]=buttord(wpn,wsn,rp,rs) ;

disp ('ORDER OF THE FILTER') ;

disp(N) ;

[n,d]=butter (N,wpn) ;

[h,f]=freqz(n,d, 512, fs) ;
gain=20*1ogl0 (abs (h)) ;

an=angle (h) ;

subplot(2,1,1);

plot(f,gain) ;

xlabel (' FREQUENCY --- >');

ylabel ('MAGNITUDE') ;

title ('AMPLITUDE RESPONSE') ;

subplot(2,1,2);

zplane (n,d) ;

z=roots (n) ;

p=roots (d) ;

xlabel ('RREAL PART --- >');

ylabel ('IMAGINARY PART') ;

title ('POLE-ZERO PLOT') ;

INPUT: (IIR Butterworth Using Bilinear Transformation)

Enter the passband edge frequencies wp= [200 300]
Enter the stopband edge frequencies ws= [50 450]
Enter the passband ripple rp= 3

Enter the stopband ripple rs= 20

Enter the sampling frequency fs= 1000

Order of the filter 2

QOUTPUT: (IIR Butterworth Using Bilinear Transformation)

AMPLITUDE RESPONSE

0
L
Qo 50+
=)
E
z
2 -100
=
-150
0 50 100 150 200 250 300 350 400 450
FREQUENCY --->
POLE-ZERO PLOT
1F]
E X X
< 05]
D- yy\\
> 12 L2
€ o0 O Q
=z ,
g -0.5} .
= X X
-1 | [e T | [
-3 -2 -1 0 1 2 3
RREAL PART --->
PROGRAM: (Chebyshev Type 1 Band pass Filter)
clear all;
alphap=2; %pass band attenuation in dB
alphas=20; %stop band attenuation in dB
wp=[.2*pi, .4*pi];
ws=[.1*pi,.5*pi];
%To find cutoff frequency and order of the filter

[n,wn]=buttord(wp/pi,ws/pi,alphap,alphas);

%system function of the filter
[b,a]=chebyl (n,alphap,wn) ;
w=0:.01:pi;
[h,ph]=freqz (b,a,w) ;
m=20*10gl0 (abs (h)) ;
an=angle (h) ;
subplot(2,1,1);
plot(ph/pi,m);

grid;

ylabel ('Gain in dB..');

xlabel ('Normalised frequency..');
subplot(2,1,2);

plot(ph/pi,an);

grid;

ylabel ('Phase in radians..');
xlabel ('Normalised frequency..');

500

QUTPUT: (Chebyshev Type 1 Band pass Filter)

KN
o
=
|

-200- R

GainindB..

-300

0 01 02 03 04 05 06 07 08 09
Normalised frequency..

4l

Phaseinradians.

-4
0 01 02 03 04 05 06 07 08 09
Normalised frequency..

PROGRAM: (Chebyshev Il Band Reject Filter)

clear all;

alphap=2; %pass band attenuation in dB
alphas=20; %stop band attenuation in dB
ws=[.2*pi,.4*pi];

wp=[.1*pi,.5*pi];

%To find cutoff frequency and order of the filter
[n,wn]=cheb2ord (wp/pi,ws/pi,alphap,alphas) ;
%$system function of the filter
[b,a]=cheby2 (n,alphas,wn, 'stop') ;
w=0:.01:pi;

[h,ph]=freqz (b,a,w) ;

m=20*10gl0 (abs (h)) ;

an=angle (h) ;

subplot(2,1,1) ;

plot (ph/pi,m);

grid;

ylabel ('Gain in dB..');

xlabel ('Normalised frequency..');
subplot(2,1,2);

plot(ph/pi,an);

grid;

ylabel ('Phase in radians..');

xlabel ('Normalised frequency..');

QOUTPUT: (Chebyshev Il Band Reject Filter)

20
. (o}
m
T
£ -20
€
: [\
-40 V 7 V
-60
(0] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalised frequency..
4
§ 2 .
E fo) l\\ Ex%m
£ \/ \
i
-4
(0] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalised frequency..

RESULT:

Thus the program to design IR BUTTERWORTH Low Pass Filter using Impulse

Invariant Transformation method and find out the Magnitude response and Pole Zero Plot

by using MATLAB was executed.

Ex. No: 7
Date:
MULTIRATE FILTERS

To design linear-phase FIR L"-band filters of the length N =31, with L = 3 and with
the roll-off factors: p = 0.2, 0.4, and 0.6. Plot the impulse responses and the magnitude
responses for all designs.

APPARATUS REQUIRED:

HARDWARE : Personal Computer
SOFTWARE : MATLABR2014a
PROCEDURE:

1. Start the MATLAB program.
Open new M-file

Type the program

Save in current directory
Compile and Run the program

If any error occurs in the program correct the error and run it again

N oo g c w DN

For the output see command window\ Figure window

®©

Stop the program.

PROGRAM: (Multirate Filters)

close all, clear all

N =31; %

Nord = N-1; %
L =3;

rol = 0.2; %
factor

hl = firnyquist(Nord,L,rol); %
ro2 = 0.4; %
factor

h2 = firnyquist(Nord,L,ro2); %
ro3 = 0.6; %
factor

h3 = firnyquist(Nord,L,ro3); % filter design
figure (1)

subplot(3,1,1)

stem(0:N-1,hl, 'b'")
axis([0,30,-0.2,0.5])
ylabel('h 1[n]"'")
title('Figure 1')
legend('hl')
subplot(3,1,2)
stem(0:N-1,h2,'k")
axis([0,30,-0.2,0.5])
ylabel('h_2[n]')
legend('h2"')
subplot(3,1,3)
stem(0:N-1,h3,'r")
axis([0,30,-0.2,0.5])
xlabel('n')
ylabel('h 3[n]"')
legend('h3"')
% Computing frequency responses
[H1,f] = freqz(hl,1,256,2);
[H2,f] = freqz(h2,1,256,2);
[H3,f] = freqz(h3,1,256,2);
figure (2)

|l

Filter length
Filter order

Roll-off

Filter design
Roll-off

Filter design
Roll-off

plot(f,abs(H1l),'b',f,abs(H2),'k',f,abs(H3),'r'), grid

title ('Figure 2')
axis([0,1,0,1.1])
xlabel ('\omega/\pi')
ylabel ('Magnitude')

legend('|H_1l(e*j*\omega)|','|H _2(e*j*\omega)|','|H _3(e*j"

\omega) | ')

QUTPUT: (Multirate Filters)

Figure 1
2 o P19 ’
E_ D{\ﬁﬂﬁﬁﬁﬁmmﬁ r\l? (Pr\ ﬁmmhﬁﬁﬁﬂﬂr}
b U U T e Y
_I:Iz 1 1 | 1 1
0 5 10 15 20 25 30
= o 8l .
J:N A - A i) r\l:F (Pr\ P AN A
D(;uuuuuuu RV VRV S R il
_|:|2 1 1 | 1 1
0 5 10 15 20 25 30
0.4 T T T T T
s o2 P19 h3
= pooooecosem el ? e rrossoscooed
_|:|2 1 1 | 1 1
5 10 15 20 25 30
n
Figure 2
] : H, ()1 ||
IH, (™)1
. IH &1 |
%D.E ... m
=
Od b b R S _
PP N e
0 0.9 1
RESULT:

Thus the linear phase L™ band filter is designed and the magnitude response of the

filter is obtained using MATLAB.

Ex. No: 8
Date:
EQUALIZATION

To write MATLAB programs for equalization.

APPARATUS REQUIRED:

HARDWARE : Personal Computer
SOFTWARE : MATLABR2014a
PROCEDURE:

1. Start the MATLAB program.

N

Open new M-file
Type the program

Save in current directory

o > »w

Compile and Run the program

IS

If any error occurs in the program correct the error and run it again
7. For the output see command window\ Figure window

8. Stop the program.

PROGRAM: (Equalization)

clc;clear all;

close all;

M=3000;

T=2000;

dB=25;

L=20;

ChL=5;

EgD=round ((L+ChL) /2) ;
Ch=randn(1,ChL+1)+sqrt(-1) *randn (1,ChL+1) ;
Ch=Ch/norm(Ch) ;
TxS=round(rand(1,M)) *2-1;
TxS=TxS+sqrt (-1) * (round (rand (1,M)) *2-1) ;
x=filter (Ch,1,TxS) ;

n=randn (1,M) ;
n=n/norm(n) *10~ (-dB/20) *norm (x) ;

x=x+n; K=M-L;

X=zeros (L+1,K) ;

for i=1:K
X(:,i)=x(i+L:-1:i)."';
end

e=zeros (1,T-10);

c=zeros (L+1,1) ;

mu=0.001;

for i=1:T-10

e (i)=TxS (i+10+L-EgD) -c'*X(:,1i+10) ;
c=c+mu*conj(e(i)) *X(:,i+10) ;

end

sb=c'*X;

sbl=sb/norm(c) ;

sbl=sign (real (sbl)) +sqrt(-1) *sign(imag(sbl)) ;
start=7;

sb2=sbl-TxS (start+l:start+length(sbl)) ;
SER=length (find (sb2~=0)) /1length (sb2) ;
disp (SER) ;

subplot(2,2,1),

plot(TxS,'*');

grid,title('Input symbols'); xlabel('real
part') ,ylabel ('imaginary part')

axis([-2 2 -2 2])

subplot(2,2,2),

plot(x,'o"');

grid, title('Received samples'); xlabel('real part'),
ylabel ('imaginary part')

subplot(2,2,3),

plot(sb,'o"');

grid, title('Equalized symbols'), xlabel('real part'),
ylabel ('imaginary part')

subplot(2,2,4),

plot(abs(e)) ;

grid, title('Convergence'), xlabel('n'),
ylabel ('error signal')

QUTPUT: (Equalization)

)| Figure 1 Q@El

Fil= Edit Wiew Insert Tools Deskiop window Help

Ddde hh RRTDEN-S | 0E =D

Transmitied bits Received symbals

= + + = é '

1] (1] -
% | °(o® %S o
= = : o

-2 -1] 1 2
real
Conmvergence
4 -
G I R SRR

= z
= =
= =
£ =
= k]

] S00 1000 1500 =000
r

RESULT:

Thus the equalization program was designed and developed.

DSP PROCESSOR EXPERIMENTS

Ex. No: 9
Date:
STUDY OF ARCHITECTURE OF DIGITAL SIGNAL PROCESSOR

AIMC
To study the Architecture of TMS320VVC67XX DSP processor.

INTRODUCTION

The hardware experiments in the DSP lab are carried out on the Texas Instruments
TMS320C6713 DSP Starter Kit (DSK), based on the TMS320C6713 floating point DSP
running at 225MHz. The basic clock cycle instruction time is 1/(225 MHz)= 4.44
nanoseconds. During each clock cycle, up to eight instructions can be carried out in parallel,
achieving up to 8x225 = 1800 million instructions per second (MIPS). The DSK board
includes a 16MB SDRAM memory and a 512KB Flash ROM. It has an on-board 16-bit audio
stereo codec (the Texas Instruments AIC23B) that serves both as an A/ID and a D/A
converter. There are four 3.5 mm audio jacks for microphone and stereo line input, and
speaker and headphone outputs. The AIC23 codec can be programmed to sample audio inputs
at the following sampling rates: f; = 8, 16, 24, 32, 44.1, 48, 96 kHz

The ADC part of the codec is implemented as a multi-bit third-order noise-shaping
delta-sigma converter) that allows a variety of oversampling ratios that can realize the above
choices of fs. The corresponding oversampling decimation filters act as anti-aliasing pre-
filters that limit the spectrum of the input analog signals effectively to the Nyquist interval
[—fs/2,fs/2]. The DAC part is similarly implemented as a multi-bit second-order noise-
shaping delta-sigma converter whose oversampling interpolation filters act as almost ideal

reconstruction filters with the Nyquist interval as their pass band.

The DSK also has four user-programmable DIP switches and four LEDs that can be
used to control and monitor programs running on the DSP. All features of the DSK are
managed by the Code Composer Studio (CCS). The CCS is a complete integrated
development environment (IDE) that includes an optimizing C/C++ compiler, assembler,
linker, debugger, and program loader. The CCS communicates with the DSK via a USB
connection to a PC. In addition to facilitating all programming aspects of the C6713 DSP, the
CCS can also read signals stored on the DSP--s memory, or the SDRAM, and plot them in the
time or frequency domains. The following block diagram depicts the overall operations
involved in all of the hardware experiments in the DSP lab. Processing is interrupt-driven at

the sampling rate fs, as explained below.

cCs

interrupt
¢ |
Y i
sample | X - s aralo
processing M:BSP AIC23 «— analog input
algorithm 5 » codec —— analog output
TMS320C6713 DSP Tﬂ

TMS320C6713 floating point DSP

The AIC23 codec is configured (through CCS) to operate at one of the above
sampling rates fs. Each collected sample is converted to a 16-bit two’s complement integer (a
short data type in C). The codec actually samples the audio input in stereo, that is, it collects

two samples for the left and right channels

ARCHITECTURE

The 67XX DSPs use an advanced, modified Harvard architecture that maximizes
processing power by maintaining one program memory bus and three data memory buses.
These processors also provide an arithmetic logic unit (ALU) that has a high degree of
parallelism, application-specific hardware logic, on-chip memory, and additional on-chip
peripherals. These DSP families also provide a highly specialized instruction set, which is the
basis of the operational flexibility and speed of these DSPs. Separate program and data
spaces allow simultaneous access to program instructions and data, providing the high degree
of parallelism. Two reads and one write operation can be performed in a single cycle.
Instructions with parallel store and application-specific instructions can fully utilize this
architecture. In addition, data can be transferred between data and program spaces. Such
parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that
can all be performed in a single machine cycle. Also included are the control mechanisms to

manage interrupts, repeated operations, and function calls.

| CB15-CB0 |

| DB15-DB0 |
L 2 »
A B! T| C| D S Shifter output (40)
40 140 y Y v Y 4 f
MUX MUX
SXM—»-{ Signctr | | Signctr }¢—— SXMm
A 4 A 4
. YUX ovM
21 [CE=1 b
“ P | C
ALU OVA/OVB
ZA/ZB
MUX
40 TC
140 A A A A Legend:
Al M| Ul B A Accumulator A
40, B Accumuiator B
4 C CB data bus
D DB data bus
MAC M MAC unit
output S Barrel shifter
T Tregister
U ALU
L ERI0=eo0 J 40 From accumulator A
| DB15-DB0 |
[PBis—PBO_____]| 40 From accumulator B
— {1
T DV AV p" A$DV c 4
\ X MUX / \, Y MUX /
4 v
| Sign ctr Sign ctr | T
117 117 A Accumulator A
Y v B Accumulator 8
D 5B data bus
%M YM EP) gB program bus
Multiplier (17 x 17) 0 T T register
Al B
T =N
FRCT —{ Fracuint] \. Mux /
A 4 v

Adder (40)

YA__I_Y7 »

A 4

'

Zero detect

Round SAT

40

>

—»—- OVA/OVB
—»— ZA/ZB

>

To accumulator A/B

1. Central Processing Unit (CPU)

The CPU of the 67XX devices contains:

o A 40-bit arithmetic logic unit (ALU)

e Two 40-bit accumulators

e A barrel shifter

e A 17 -bit multiplier/adder

e A compare, select, and store unit (CSSU)
2. Arithmetic Logic Unit (ALU)

The --67XX devices perform 2s-complement arithmetic using a 40-bit ALU
and two 40-bit accumulators (ACCA and ACCB). The ALU also can perform
Boolean operations. The ALU can function as two 16-bit ALUs and perform two 16-
bit operations simultaneously when the C16 bit in status register 1 (ST1) is set.

3. Accumulators

The accumulators, ACCA and ACCB, store the output from the ALU or the
multiplier / adder block; the accumulators can also provide a second input to the ALU
or the multiplier / adder. The bits in each accumulator are grouped as follows:

e Guard bits (bits 32-39)
e A high-order word (bits 16-31)
o A low-order word (bits 0-15)

Instructions are provided for storing the guard bits, the high-order and the low-
order accumulator words in data memory, and for manipulating 32-bit accumulator
words in or out of data memory. Also, any of the accumulators can be used as
temporary storage for the other.

4. Barrel Shifter

The --67XX--s barrel shifter has a 40-bit input connected to the accumulator or
data memory (CB, DB) and a 40-bit output connected to the ALU or data memory
(EB). The barrel shifter produces a left shift of 0 to 31 bits and a right shift of 0 to 16
bits on the input data. The shift requirements are defined in the shift-count field
(ASM) of ST1 or defined in the temporary register (TREG), which is designated as a
shift-count register. This shifter and the exponent detector normalize the values in an
accumulator in a single cycle. The least significant bits (LSBs) of the output are filled
with Os and the most significant bits (MSBs) can be either zero-filled or sign-

extended, depending on the state of the sign-extended mode bit (SXM) of ST1.

Additional shift capabilities enable the processor to perform numerical scaling, bit
extraction, extended arithmetic, and overflow prevention operations
Multiplier/Adder

The multiplier / adder perform 17-bit 2s-complement multiplication with a 40-
bit accumulation in a single instruction cycle. The multiplier / adder block consists of
several elements: a multiplier, adder, signed/unsigned input control, fractional control,
a zero detector, a rounder (2s-complement), overflow/saturation logic, and TREG.
The multiplier has two inputs: one input is selected from the TREG, a data memory
operand, or an accumulator; the other is selected from the program memory, the data
memory, an accumulator, or an immediate value. The fast on-chip multiplier allows
the C67XX to perform operations such as convolution, correlation, and filtering
efficiently. In addition, the multiplier and ALU together execute multiply/accumulate
(MAC) computations and ALU operations in parallel in a single instruction cycle.
This function is used in determining the Euclid distance, and in implementing
symmetrical and least mean square (LMS) filters, which are required for complex
DSP algorithms.

Compare, Select, and Store Unit (CSSU)

The compare, select, and store unit (CSSU) performs maximum comparisons
between the accumulator’s high and low words, allows the test/control (TC) flag bit of
status register 0 (STO) and the transition (TRN) register to keep their transition
histories, and selects the larger word in the accumulator to be stored in data memory.
The CSSU also accelerates Viterbi-type butterfly computation with optimized on-chip
hardware.

Program Control

Program control is provided by several hardware and software mechanisms:

The program controller decodes instructions, manages the pipeline, stores the
status of operations, and decodes conditional operations. Some of the hardware
elements included in the program controller are the program counter, the status and
control register, the stack, and the address-generation logic.

Some of the software mechanisms used for program control includes branches,
calls, and conditional instructions, are peat instruction, reset, and interrupt.

The C67XX supports both the use of hardware and software interrupts for
program control. Interrupt service routines are vectored through a re-locatable

interrupt vector table. Interrupts can be globally enabled / disabled and can be

10.

11.

12.

individually masked through the interrupt mask register (IMR). Pending interrupts are
indicated in the interrupt flag register (IFR). For detailed information on the structure
of the interrupt vector table, the IMR and the IFR, see the device-specific data sheets.
Status Registers (STO, ST1)

The status registers, STO and ST1, contain the status of the various conditions
and modes for the --67XX devices. STO contains the flags (OV, C, and TC) produced
by arithmetic operations and bit manipulations in addition to the data page pointer
(DP) and the auxiliary register pointer (ARP) fields. ST1 contains the various modes
and instructions that the processor operates on and executes.

Auxiliary Registers (AR0-AR7)

The eight 16-bit auxiliary registers (ARO-AR7) can be accessed by the central
arithmetic logic unit (CALU) and modified by the auxiliary register arithmetic units
(ARAUSs). The primary function of the auxiliary registers is generating 16-bit
addresses for data space. However, these registers also can act as general-purpose
registers or counters.

Temporary Register (TREG)

The TREG is used to hold one of the multiplicands for multiply and
multiply/accumulate instructions. It can hold a dynamic (execution-time
programmable) shift count for instructions with a shift operation such as ADD, LD,
and SUB. It also can hold a dynamic bit address for the BITT instruction. The EXP
instruction stores the exponent value computed into the TREG, while the NORM
instruction uses the TREG value to normalize the number. For ACS operation of
Viterbi decoding, TREG holds branch metrics used by the DADST and DSADT
instructions.

Transition Register (TRN)

The TRN is a 16-bit register that is used to hold the transition decision for the
path to new metrics to perform the Viterbi algorithm. The CMPS (compare, select,
max, and store) instruction updates the contents of the TRN based on the comparison
between the accumulator high word and the accumulator low word.

Stack-Pointer Register (SP)

The SP is a 16-bit register that contains the address at the top of the system
stack. The SP always points to the last element pushed onto the stack. The stack is
manipulated by interrupts, traps, calls, returns, and the PUSHD, PSHM, POPD, and
POPM instructions. Pushes and pops of the stack pre decrement and post increment,

respectively, all 16 bits of the SP.

13. Circular-Buffer-Size Register (BK)

The 16-bit BK is used by the ARAUSs in circular addressing to specify the data
block size.

14. Block-Repeat Registers (BRC, RSA, REA)

The block-repeat counter (BRC) is a 16-bit register used to specify the number
of times a block of code is to be repeated when performing a block repeat. The block-
repeat start address (RSA) is a 16-bit register containing the starting address of the
block of program memory to be repeated when operating in the repeat mode. The 16-
bit block-repeat end address (REA) contains the ending address if the block of
program memory is to be repeated when operating in the repeat mode.

15. Interrupt Registers (IMR, IFR)

The interrupt-mask register (IMR) is used to mask off specific interrupts
individually at required times. The interrupt-flag register (IFR) indicates the current
status of the interrupts.

16. Processor-Mode Status Register (PMST)

The processor-mode status registers (PMST) controls memory configurations

of the 67XX devices.
17. Power-Down Modes

There are three power-down modes, activated by the IDLE1, IDLE2, and
IDLE3 instructions. In these modes, the 67XX devices enter a dormant state and
dissipate considerably less power than in normal operation. The IDLElinstruction is
used to shut down the CPU. The IDLE2 instruction is used to shut down the CPU and
on-chip peripherals. The IDLE3 instruction is used to shut down the 67XX processor
completely. This instruction stops the PLL circuitry as well as the CPU and

peripherals.

RESULT
Thus the study of architecture TMS320VC67XX and its functionalities has been identified.

Ex. No: 10
Date:
LINEAR CONVOLUTION

To perform the Linear Convolution of two given discrete sequence in
Code Composer Studio.

APPARATUS REQUIRED:

HARDWARE : Personal Computer
SOFTWARE : Code Composer Studio version4
PROCEDURE:

1. Open Code Composer Studio v4.
2. To create the New Project
Project-> New (File Name. pjt, Eg: vvits.pjt)
3. Tocreate a Sourcefile
File -New— Type the code (Save & give file name, Eg: sum.c).
4. To Add Source files to Project
Project— Add files to Project— sum.c
5. To Add rts.lib file & Hello.cmd:
Project— Add files to Project— rts6700.1ib
Library files: rts6700.lib (Path: c¢:\ti\c6000\cgtools\lib\ rts6700.1ib)
Note: Select Object& Library in (*.0,*.1) in Type of files
6. Project— Add files to Project —hello.cmd
CMD file - Which is common for all non real time programs.
(Path: c:\ti \ tutorial\dsk6713\hello1\hello.cmd)
Note: Select Linker Command file (*.cmd) in Type of files
Compile:-
1. To Compile: Project— Compile
2. To Rebuild: project — rebuild,
Which will create the final .out executable file. (Eg. vvit.out).
3. Procedure to Lode and Run program:
Load the Program to DSK: File— Load program —vvit.out

To Execute project: Debug — Run

PROGRAM: (Linear Convolution)

#define xn 4

#define hn 4

void main ()

{
int *xval, *hval, *outval;
int n,k,i;
xval = (int *)0x80000000;
hval = (int *)0x80001000;
outval = (int *)0x80002000;

for (i=0;i< (xn+hn-1) ;i++)
{outval[i] = 0;xval[xn+i]=0;hval[hn+i]=0;}
for (n=0;n< (xn+hn-1) ;n++)
{
for (k=0;k<=n;k++)
outval[n] = (outval[n])+((xval[k])* (hval[n-k]))
}
halt:
goto halt;

Sample Inputs and Outputs:

Location
x1(n) Input

80000000h
80000004h
80000008h
8000000ch

x2(n) Input

80001000h
80001004h
80001008h
8000100ch

y(n) Output

80002000h
80002004h
80002008h
8000200ch
80002010h
80002014h
80002018h

Data

00000001h
00000002h
00000001h
00000000h

00000001h
00000003h
00000001h
00000003h

00000001h
00000005h
00000008h
00000008h
00000007h
00000003h
00000000h

=2 Graph Property Dialog

Single Time =l|
Graph Title linear i
Start Address 3
Acquisition Buffer Size 20
Index Increment 1
Dizplay Data Size 20
LSP Data Type 3A2-hit signed integer
Q-valus 0
Sampling Rate [Hz] 1
Plat D ata From Left to Right
Left-shifted Data Dizplay res
Autozcale On
D Walue u] y
Ames Dizplay On
Tirne Dizplay Unit =
Status Bar Display On =
Ok, | Cancel | Help |
'# /C6713 Device Functional Simulator/CPU_1 - C6713 (Simulator) - Code Composer Studio - [linear] @@@
[File Edit View Project Debug GEL Option Profile Tools DSP/BIOS Window Help - 8 X
S @b BRB| o= || & W RS SR | UE e gE | E
| linear. pit _~||Debug ~|| = # ™S W
M e @ B =&
=S - 780
{*} g Files ~
w (1 GEL files 50.74
=|-4_N Projects
t} =1 225 linear.pjt (Debuq 2531
™ l;l Dependent Pro i | I ’
|__] Documents o
|1 DSPJBIOS Conf
[Generated File: -25.37
13 Include
Iy + g Libraries . S0
I) 3 | |=wso ' . : , . , . '
=1 (i} 222 4.44 667 8.89 141 133 1586 178
X D4 g, 60 Time Lin |Auto Scale |

I

i
Build A Stdout / el »f

RESULTS:
Thus the C- Program for Linear convolution was written and the output was verified.

Ex. No: 11
Date:
CIRCULAR CONVOLUTION

To perform the circular Convolution of two given discrete sequences in Code Composer Studio .

APPARATUS REQUIRED:

HARDWARE : Personal Computer
SOFTWARE : Code Composer Studio version4
PROCEDURE:
1. Open Code Composer Studio v4.
2. To create the New Project
Project-> New (File Name. pjt, Eg: vvits.pjt)
3. Tocreate a Sourcefile

File =New— Type the code (Save & give file name, Eg: sum.c).
4. To Add Source files to Project
Project— Add files to Project— sum.c
5. To Add rts.lib file & Hello.cmd:
Project— Add files to Project— rts6700.1ib
Library files: rts6700.lib (Path: c:\ti\c6000\cgtools\lib\ rts6700.lib)
Note: Select Object& Library in (*.0,*.1) in Type of files
6. Project— Add files to Project —hello.cmd
CMD file - Which is common for all non real time programs.
(Path: c:\ti \ tutorial\dsk6713\hellol\hello.cmd)
Note: Select Linker Command file (*.cmd) in Type of files
COMPILE:
1. To Compile: Project— Compile
2. To Rebuild: project — rebuild,
Which will create the final .out executable file. (Eg. vvit.out).
3. Procedure to Lode and Run program:
Load the Program to DSK: File— Load program —vvit.out

To Execute project: Debug — Run

PROGRAM: (Circular Convolution)

volid main ()

{

int *inl, *inZ2, *out, *temp, i, sum=0, j;

inl = (int *)0x80000000;
in2 = (int *)0x80001000;
out = (int *)0x80002000;

temp = (int *)0x80003000;
for (i=0;1i<4;1i++)

{

if(i == 1)
temp[i+2] = inl[i];
else 1if(1i == 3)
temp[i-2] = inl[i];
else

temp([i] = inl[i];

}

for (i=0;i<4;i++)
{
sum = 0;
for (3=0;3<4;j++)
{

sum+=(in2[j] * temp[3])
}
out[1i] = sum;
rot (temp) ;
}
while (1) ;

Location

x1(n) Input

80000000h
80000004h
80000008h
8000000ch

x2 (n) Input

80001000h
80001004h
80001008h
8000100ch

y (n) Output

80002000h
80002004h
80002008h
8000200ch

Sample Inputs and Outputs:

Data

00000001h
00000002h
00000001h
00000000h

00000001h
00000002h
00000003h
00000004h

0000000ch
00000008h
00000008h
0000000ch

== Graph Property Dialog

Dizplay Type

Graph Title

Start Address
Acquizition Buffer Size
Index Increment
Dizplap D ata Size

' Data Type
O-walue
Sampling Rate [Hz]

Single Time

circular

M

20

1

20

22-bit zigned integer
u]

1

B X

=

Flat D ata From

Left to Right

Left-shifted D ata Dizplay res

Autozcale Orn

DC Walue u]

Awes Dizplay On

Time Display Uit =

Statuz Bar Dizplay On « K
ak I Cancel Help

JC6713 Device Functional Simulator/CPU_1 - C6713 (Simulator) - Code Composer Studio - [circular]

EEX

~] File Edit View Project Debug GEL Option Profile Tools DSP{BIOS Window Help - 8 X
A & L o oo [N2 [o= i =
|circular.pit L”Debug L] >
Hie | 63 (=] £
= : 500
%} =l @ circular.pjt (Deb A
= (L) Dependent Pro 33.3
3] Documents
8 5 (1] DSP{BIOS Conf 16.7
™ (L] Generated File:
= [Include o
U =123 Libraries
[#] rts6700.lb =16.74
"3 -3 Source i |
. [#] cir.c Z =333y
{ e :
2 12 | & I . . ; . . r r :
= 0 222 4.44 667 8.89 1141 133 156 178
AR , ; -
2 {3, 45) Time Lin Auto Scale
2 -
3
4
S
the circular convolution is
45 50 50 45 35 =
4] Build A Stdout / Lel]l »

RESULT:
Thus the C- Program for Circular convolution was written and the output was verified.

Ex. No: 12
Date:

FFT IMPLEMENTATION
AlM:

To write a C- program to compute 8 — FFT of given sequences using DIF — FFT algorithm in
Code Composer Studio .

APPARATUS REOQUIRED:
HARDWARE : Personal Computer
SOFTWARE : Code Composer Studio version4
PROCEDURE:
1. Open Code Composer Studio v4.

N

To create the New Project
Project-> New (File Name. pjt, Eg: vvits.pjt)
3. Tocreate a Sourcefile
File =New— Type the code (Save & give file name, Eg: sum.c).
4. To Add Source files to Project
Project— Add files to Project— sum.c
5. To Add rts.lib file & Hello.cmd:
Project— Add files to Project— rts6700.1ib
Library files: rts6700.lib (Path: c:\ti\c6000\cgtools\lib\ rts6700.1ib)
Note: Select Object& Library in (*.0,*.1) in Type of files
6. Project— Add files to Project —hello.cmd
CMD file - Which is common for all non real time programs.
(Path: c:\ti \ tutorial\dsk6713\hellol\hello.cmd)
Note: Select Linker Command file (*.cmd) in Type of files
COMPILE:
1. To Compile: Project— Compile
2. To Rebuild: project — rebuild,
Which will create the final .out executable file. (Eg. vvit.out).
3. Procedure to Lode and Run program:
Load the Program to DSK: File— Load program —vvit.out

To Execute project: Debug — Run

PROGRAM: (FFT Implementation)

#define N 4
#define N2 (N << 1)
void main ()

{

// variable declaration
int *x,twid[8], temp;
int ir,ii,tr,ti,ar,ai,br,bi,i,j,k,c,s,1l;
int m;
// address assignment
x = (int *)0x80001000; /* both input and output here */

// twidle initialization

; /* REAL AND IMAGINARY PARTS PLACED ALTERNATIVELY*/

~e.

o e

~e.

Il
OO O o
~

|
= N

~e

[T T T N T S R S |

// bit reverse action

j=1;
for (i=1;i<N2;i+=2)
{
if (§>1)
{
{temp=x[j];x[]]= [l] X
{temp=x[Jj-1];x[J-1]=x][
}
m = N2>>1;
while(m >= 2 && j>m)
{J—=m;
m>>=1;}
J+=m;

[i]=temp; }
i-1];x[i-1]=temp; }

// fft calculation starts here

-
I
(@)

for (1=1;1<=2;1++)
{
for (i=0,jJ=(2*1) ;i<c;i+=s, j+=s)
{
ir = x[J];
ii = x[j+11];
tr = twidl[k++];

ti = twid[k++];
x[jJ] = (ir*tr) - (ii*ti);
x[J+1] = (ir*ti) + (ii*tr);
ar = x[1];
ai x[1+17;
pbr = x[j];
bi = x[j+1];
x[1] = ar + br;
x[1+1] = ai + bi;
x[j] = ar - br;
x[J+1] = ai - bi;
}
s = s/2;
c =c/2;
}

Sample Inputs and Outputs:

Input Data Memory:

Address : RealData / Address : Immg.Data
80001000 : 0x0001 / 80001004 : 0x0000
80001008 : 0x0002 / 8000100C : 0x0000
80001010 : 0x0003 / 80001004 : 0x0000
80001018 : 0x0004 / 8000101C : 0x0000
Output Data Memory:
Address : RealData / Address : Immg.Data
/

80001000 : Ox000A (10)/ 80001004 : 0x0000
80001008 : OXFFFE (-2)/ 8000100C : 0x0002
80001010 : OXFFFE (-2)/ 80001004 : 0x0000
80001018 : OXFFFE (-2)/ 8000101C : OXFFFE (-2)

RESULT:

Thus the C- Program for Circular convolution was written and the output was verified.

Ex. No: 13

Date:
WAVEFORM GENERATION
AlM:
To generate a sine wave and square wave using Code Composer Studio.
APPARATUS REQUIRED:
HARDWARE : Personal Computer
SOFTWARE : Code Composer Studio version4
PROCEDURE:
1. Open Code Composer Studio v4.
2. To create the New Project

Project-> New (File Name. pjt, Eg: vvits.pjt)
3. Tocreate a Sourcefile

File -New— Type the code (Save & give file name, Eg: sum.c).
4. To Add Source files to Project

Project— Add files to Project— sum.c
5. To Add rts.lib file & Hello.cmd:

Project— Add files to Project— rts6700.1ib

Library files: rts6700.lib (Path: c:\ti\c6000\cgtools\lib\ rts6700.1ib)
6. Project— Add files to Project —hello.cmd

CMD file - Which is common for all non real time programs.

(Path: c:\ti \ tutorial\dsk6713\hello1\hello.cmd)

Note: Select Linker Command file (*.cmd) in Type of files
COMPILE:

1. To Compile: Project— Compile
2. To Rebuild: project — rebuild,

Which will create the final .out executable file. (Eg. vvit.out).
3. Procedure to Lode and Run program:

Load the Program to DSK: File— Load program —vvit.out

To Execute project: Debug — Run

PROGRAM: (Sine waveform)

#include <stdio.h>
#include <math.h>
float a[500];

void main ()

{
int i=0;
for (1i=0;1<500;i++)
{
a[i]=sin(2*3.14*10000%*1i) ;

QUTPUT: (Sine waveform)

& Graph Property Dialog

Display Type Single Time

Graph Title Graphical Display

Start Address a

Acquisition Buffer Size 128

Index Increment 1

Display Data Size 200
| DSP Data Type 32-bit floating point @'j
Sampling Rate (Hz) 1

Plot Data From Left ta Right

Left-shifted D ata Display Yes

Autoscale On

DC Value 0

Axes Display On L3
Time Display Unit $

Status Bar Display On

Maanitude Display Scale Linear -

[ok | concel| Hep |

B Graphical Display

-0.333

-08674

4000
0 M1 22 M3 M4 m6 7 T8 89 0 M 12 1® 14 1% 87 18 19 1%

(25,0) Tine lin' [Auto Scde

PROGRAM: (Square waveform)

#include <stdio.h>
#include <math.h>
int a[1000];

void main ()

{
int i, j=0;
int b=5;
for (i=0;i<10;i++)
{

for (j=0;3j<=50;7j++)

{

a[(50*%i)+3j]=b;

}
b=b* (-1) ;

}
OUTPUT: (Square waveform)

Display Type
Graph Title
Start Address
Acquisition Buffer Size
Index Increment
Display Data Size
DSP Data Type
O-value
Sampling Rate (Hz)

Plot Data From
Left-shifted D ata Display

Time Display Unit
Status Bar Display

&2 Graph Property Dialog

Single Time
Graphical Display

a

128

1

200

32-bit signed integer
u]

1

Left to Right

Yes

On

0

On

s

On

| oK l Cancel

[

Help

T
150

167 183 199
(99, 5) Time Lin Auto Scale
RESULT:

Thus, the sine wave and square waveform was generated displayed at graph.

Ex. No: 14
Date:

INTERFACING OF LED
AIMC

To perform interfacing of LED using TMS320C67XX DSP KIT.

APPARATUS REQUIRED:

HARDWARE : Personal Computer & TMS320C67XX kit
SOFTWARE : Assembly Language
PROCEDURE:
1. Start VSI6713
2. Inthe Window of VI, Select workspace view (Menu —> VIEW->Workspace)
3. Power on the DSK
4. Goto Menu -> Serial -> Port Settings; in the pop up window, set baud rate = 19200;

Reset the DSK using the Button switch.

5. In Port Setting Window, click on “Autodetect” (Connection to DSK with PC is acknowledged thro
COM port)

6. Open new project (Menu -> Project -> New Project)

7. In the edit window of the workspace, type the assembly language programming and save it as ASM
File.

8. In Root Window of workspace, select Assembly -> Go to Menu -> Project -> Add File to Project —
Browse to the newly saved ASM File.

9. In Root Window of workspace, select Cmd Files -> Go to Menu -> Project -> Add File to Project —
Browse to the MICRO167.cmd file.

10. Go to Menu -> Project -> Build (compile/interpret will be completed without error)

11. Go to Menu -> Serial -> Load program -> browse to the new file saved with extension .ASC

12. Verify the program output in the DSK through LEDs.

LED TEST PROGRAM

.sect "00006000Rn"
. text
start:
mvkl .sl 0x000000AA, a4
mvkl .sl 0x00000055,a6
mvkl .sl 0x90040016,a3
mvkh .sl1l 0x90040016,a3
stb .dl a4,*a3
nop
mvkl RET,bll
mvkh RET,bll
b delay
nop
nop 6
RET
stb .dl a6, *a3
nop
mvkl start,bll
mvkh start,bll
b delay
nop
nop 6
delay:
mvkl Ox0005ffff, b2
mvkh Ox0005ffff, b2
rep:
sub b2,1,b2
nop
nop 3
[b2] b rep
nop
nop 6
b bll
nop
nop 6
.end
RESULT:

;LED OUT ADDRESS

Thus, the interfacing of LED using TMS320C6713 was executed successfully.

